iCUB
a shared platform for research in robotics & AI

Alessandro Roncone
Postdoctoral Associate
Social Robotics Lab
http://alecive.github.io
IIT - Italian Institute of Technology

Italy

Genoa

IIT

Robotics @ IIT
IIT - iCub Facility
The iCub

1. price: 250K€
2. born in 2004
3. 30 iCub distributed since 2008
Why is the iCub so special?

- Full humanoid robot (104cm, 25 kg)
- 53 degrees of freedom (DoFs)
- Hands: 5 fingers, 9 degrees of freedom, 19 joints
- Human-like sensors: cameras, microphones, joint encoders, IMUs (accelerometer/gyroscope), force/torque sensors
- Artificial skin
- Large software repository (~2M lines of code)
- Open source HW & SW
Why humanoids?

- Scientific reasons (elephants don’t play chess)
- Natural human-robot interaction
- Challenging mechatronics
Why open source?

- Repeatable experiments
- Benchmarking
- Quality of the HW & SW
- This resonates with *industry-grade R&D* in robotics
Why open source?
Outline

Hardware

Force/Torque Sensor
Artificial Skin
Inertial Sensor

Software

YARP
Kinematics/Dynamics
Computer Vision & Machine Learning
HW1 - Force / Torque sensors

- placed on the proximal part of the limb
- able to sense force up to the end-effector
- critical for many applications: safety, dynamics/control, HRI, ...
HW1 - Force / Torque sensors - Teaching Actions
HW2 - Artificial Skin

- **ground plane**: conductive fabric
- **soft material**: e.g. silicone
- **electrodes**: flexible PCB
HW2 - Artificial Skin
HW2 - Artificial Skin

upper body: 1868
legs and feet: 1310x2

total: 4488 taxels!!
HW2 - Artificial Skin for grasping

Without tactile feedback

With tactile feedback
HW2 - Artificial Skin - Self Calibration

Automatic kinematic chain calibration using artificial skin: self-touch in the iCub humanoid robot

A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta
HW3 - Inertial Sensor

3 DOF Orientation Tracker
Gaze Stabilization for Humanoid Robots: a Comprehensive Framework

Outline

Hardware

- Force/Torque Sensor
- Artificial Skin
- Inertial Sensor

Software

- YARP
- Kinematics & Dynamics
- Computer Vision & Machine Learning
SW1 - YARP

YARP → Yet Another Robot Platform

- Peer-to-peer, *loosely coupled*, communication
- Very stable code base ~15 years old (older than ROS)
- Flexibility and minimal dependencies, fits well with other systems
- Easy install with binaries on many OSes/distributions (Ubuntu, Debian, Windows, MacOs)
- Many protocols:
 - Built-in: tcp/udp/mcast
 - Plug-ins: ROS tcp, xml rpc, mjpegs etc..
Using YARP without hardware: **dataset player**

Available in binary releases for Linux and Windows
Using YARP without hardware: simulators

- iCub_SIM, and ODE-based simulator
- Gazebo, the VRC/DRC simulator
SW2 - Inverse Kinematics and Cartesian Control

- Inverse Kinematics Solver + Controller

- IK Solver → Non linear constrained optimization

- Controller → Able to generate smooth, human-like velocity profiles at the end-effector given the desired joint configuration
\[q_d = \arg \min_{q \in \mathbb{R}^n} (\|\alpha_d - K_\alpha(q)\|^2 + \beta(q_{res} - q)^T W(q_{res} - q)) \]

s.t. \[\|x_d - K_x(q)\|^2 < \varepsilon \]

- Quick convergence (<10ms)
- Scalability
- Singularities and joints bound handling
- Complex constraints:

\[\min_{q, \dot{q}, \ddot{q}} \frac{1}{2} \left((\dot{q} - \dot{q}_d)^T W_q (\dot{q} - \dot{q}_d) + (\ddot{q} - \ddot{q}_d)^T W_x (\ddot{q} - \ddot{q}_d) \right) \]

s.t. \[\dot{x} = J \cdot \dot{q} \]
The iCub's head has 6DoF.

The fixation point can be seen as the end-effector of a virtual kinematic chain that starts from the neck base.

Similar techniques apply.
The red ball is detected thanks to a particle filter tracker.

The tracker provides the 3D position of the ball w.r.t. the robot.

The Cartesian controller steers the arm toward the target 3D point.

The Gaze controller moves the robot’s gaze in the same direction.

The Force/Torque sensors make the robot compliant.
SW2 - Dynamics
SW2 - Dynamics is (theoretically) solvable.

\[M(q) \ddot{\mathbf{q}} + C(q, \mathbf{v}_q) \mathbf{v}_q + g(q) = \begin{bmatrix} 0 \\ \tau_q \end{bmatrix} + J^T(q) \mathbf{f} \]

\[M(q) \ddot{\mathbf{q}} + C(q, \mathbf{v}_q) \mathbf{v}_q + g(q) = \begin{bmatrix} 0 \\ \tau_q \end{bmatrix} + J^T(q) \mathbf{f} \]

\[\begin{bmatrix} J(q) & J(q) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{v}}_q \\ \dot{\mathbf{v}}_q \end{bmatrix} + \dot{J}(q, \mathbf{v}_q) + \dot{J}(q, \mathbf{v}_q) = 0 \]
..but hard to implement!

The contact force/torque at the floor is controlled to maintain the equilibrium
Please put those into the dishwashing machine.

Could you please help me with the TV set?
The iCub puts the plates into the *dishwashing machine*.
SW3 - Computer Vision for Robotics

Teleoperation

Markers

Structured Environment

3D reconstruction & strong supervision
SW3 - Breakthrough in Computer Vision

Deep Learning
+ Big Datasets
= Approaching human performance on the same dataset!
Human-Robot Interaction

There are better ways to do that!

HRI is a natural application for visual recognition

In robotics strong cues are often available, therefore object detectors can be avoided

Recognition as tool for complex tasks: grasp, manipulation, affordances, pose

Self-Supervision

kinematics

motion
Semi-autonomous Learning
iCub World 2.0 Dataset

- Growing dataset collecting images from a real robotic setting
- Tool for benchmarking visual recognition systems in robotics
- 28 Objects, 7 categories, 4 different acquisition sessions → ~50K Images
iCub World 2.0 Dataset

- Growing dataset collecting images from a real robotic setting
- Tool for benchmarking visual recognition systems in robotics
- 28 Objects, 7 categories, 4 different acquisition sessions → ~50K Images
Interactive Objects Learning
Thank you! And thanks to:

Giorgio Metta

Lorenzo Natale, Francesco Nori

Ugo Pattacini, Vadim Tikhanoff, Marco Randazzo, Carlo Ciliberto, Daniele Pucci, Francesco Romano, Giulia Pasquale, Sean Ryan Fanello, Ali Paikan, Jorhabib Eljaik, Silvio Traversaro

The iCub Facility